Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus.
نویسندگان
چکیده
We used DNA sequencing and gel blot surveys to assess the integrity of the chloroplast gene infA, which codes for translation initiation factor 1, in >300 diverse angiosperms. Whereas most angiosperms appear to contain an intact chloroplast infA gene, the gene has repeatedly become defunct in approximately 24 separate lineages of angiosperms, including almost all rosid species. In four species in which chloroplast infA is defunct, transferred and expressed copies of the gene were found in the nucleus, complete with putative chloroplast transit peptide sequences. The transit peptide sequences of the nuclear infA genes from soybean and Arabidopsis were shown to be functional by their ability to target green fluorescent protein to chloroplasts in vivo. Phylogenetic analysis of infA sequences and assessment of transit peptide homology indicate that the four nuclear infA genes are probably derived from four independent gene transfers from chloroplast to nuclear DNA during angiosperm evolution. Considering this and the many separate losses of infA from chloroplast DNA, the gene has probably been transferred many more times, making infA by far the most mobile chloroplast gene known in plants.
منابع مشابه
The Mitochondrial Genome of Soybean Reveals Complex Genome Structures and Gene Evolution at Intercellular and Phylogenetic Levels
Determining mitochondrial genomes is important for elucidating vital activities of seed plants. Mitochondrial genomes are specific to each plant species because of their variable size, complex structures and patterns of gene losses and gains during evolution. This complexity has made research on the soybean mitochondrial genome difficult compared with its nuclear and chloroplast genomes. The pr...
متن کاملCodon bias patterns in photosynthetic genes of halophytic grass Aeluropus littoralis
Codon bias refers to the differences in the frequency of occurrence of synonymous codons in coding DNA. Pattern of codon and optimum codon utilization is significantly different between the lives. This difference is due to the long term function of natural selection and evolution process. Genetics drift, mutation and regulation of gene expression are the main reasons for codon bias. In this stu...
متن کاملComplete plastid genome sequences of three Rosids (Castanea, Prunus, Theobroma): evidence for at least two independent transfers of rpl22 to the nucleus.
Functional gene transfer from the plastid to the nucleus is rare among land plants despite evidence that DNA transfer to the nucleus is relatively frequent. During the course of sequencing plastid genomes from representative species from three rosid genera (Castanea, Prunus, Theobroma) and ongoing projects focusing on the Fagaceae and Passifloraceae, we identified putative losses of rpl22 in th...
متن کاملLoss of Chloroplast trnLUAA Intron in Two Species of Hedysarum (Fabaceae): Evolutionary Implications
Previous studies have indicated that in all land plants examined to date, the chloroplast gene trnLUAA isinterrupted by a single group I intron ranging from 250 to over 1400 bp. The parasitic Epifagus virginiana haslost, however, the entire gene. We report that the intron is missing from the chloroplast genome of twoarctic species of the legume genus Hedysarum (H. alpinum, H. ...
متن کاملMultiple losses and transfers to the nucleus of two mitochondrial succinate dehydrogenase genes during angiosperm evolution.
Unlike in animals, the functional transfer of mitochondrial genes to the nucleus is an ongoing process in plants. All but one of the previously reported transfers in angiosperms involve ribosomal protein genes. Here we report frequent transfer of two respiratory genes, sdh3 and sdh4 (encoding subunits 3 and 4 of succinate dehydrogenase), and we also show that these genes are present and express...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 13 3 شماره
صفحات -
تاریخ انتشار 2001